

Edexcel Further Maths A-levelFurther Statistics 1

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Discrete Distributions

Discrete Random Variables

For a discrete random variable *X* taking values x_i with probabilities $P(X = x_i)$:

Expectation (mean)

$$E(X) = \mu = \sum x_i P(X = x_i)$$

Variance

$$Var(X) = \sigma^2 = \sum (x_i - \mu)^2 P(X = x_i) = E(X^2) - (E(X))^2$$

For a function g(X):

$$E(g(X)) = \sum g(x_i) P(X = x_i)$$

$$E(aX + b) = aE(X) + b$$

$$Var(aX + b) = a^2 Var(X)$$

Standard Discrete Distributions

Distribution	Binomial $B(n,p)$	Poisson $Po(\lambda)$	Geometric $Geo(p)$ on 1, 2,	Negative binomial on $r, r+1,$
P(X=x)	$\binom{n}{x}p^x(1-p)^x$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$p(1-p)^{x-1}$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$
Mean	пр	λ	$\frac{1}{p}$	$\frac{r}{p}$
Variance	np(1-p)	λ	$\frac{1-p}{p^2}$	$\frac{r(1-p)}{p^2}$
P.G.F	$(1-p+pt)^n$	$e^{\lambda(t-1)}$	$\frac{pt}{1-(1-p)t}$	$\left(\frac{pt}{1-(1-p)t}\right)^r$

Poisson Distribution

If two Poisson distributions *X*, *Y* are independent:

$$X + Y \sim Po(\lambda_x + \lambda_y)$$

If each observation of *X* is independent and $X \sim Po(\lambda)$:

$$aX \sim Po(a\lambda)$$

Binomial approximation

If $X \sim B(n, p)$ and n is large and p close to 0 then $X \approx \sim Po(np)$ where $\lambda = np$.

Geometric Distribution

Cumulative Distribution

$$P(X \le x) = 1 - (1 - p)^x$$

$$P(X \ge x) = (1-p)^{x-1}$$

Probability Generating Functions

For a discrete random variable *X*:

$$G_X(t) = E(t^x) = \Sigma P(X = x)t^x$$

For Z = X + Y, where X and Y are independent: $G_Z(t) = G_X(t) \times G_Y(t)$

$$G_{z}(t) = G_{y}(t) \times G_{y}(t)$$

$$E(X) = G'_X(1)$$

$$Var(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2$$

$$G_{aX+b}(t) = t^b G_X(t^a)$$

Hypothesis Testing

Null hypothesis	H_0 : $\theta = m$	
One tailed test	$H_1: \theta > m \text{ or } \theta < m$	
Two-tailed test	$H_1:\theta\neq m$	

Central Limit Theorem

If $X_1, X_2, ..., X_n$ is a random sample of size n from a population with mean μ and variance σ^2 , then

$$X \approx \sim N(\mu, \frac{\sigma^2}{n}).$$

Chi Squared Tests

Measure of Goodness of Fit

 $O_i = observed frequency$ $E_i = expected frequenct$ N = number of trials

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum_{i=1}^{n} \frac{O_{i}^{2}}{E_{i}} - N$$

The greater the value of X^2 , the less good the fit.

Degrees of Freedom

 $No.of\ degrees\ of\ freedom = No.of\ cells\ (after\ necessary\ combining) - No.of\ parameters$

Contingency Tables

$$Expected\ frequency = \frac{Row\ total\ \times Column\ total}{Grand\ total}$$

Number of degrees of freedom $\nu = (h-1)(k-1)$ for an $h \times k$ table

Quality of Tests

 $Power = 1 - P(Type\ II\ error) = P(being\ in\ the\ critical\ region\ when\ H_0\ is\ false)$

